As the 2nd wave of the COVID-19 Pandemic continued to emerge with the discovery of a positive coronavirus case on 4th October, 2020 at a garment factory in the Gampaha District, pandemonium broke out while the cases kept increasing at a rapid pace. The condition kept worsening day by day with a number of areas being placed under isolation and declared quarantined areas.

The Police and the Armed Forces were called upon to man the several checkpoint that were established, especially in the Western Province where the condition was rather severe. They had to ensure restricted movement of residents, in the affected areas.

In order to provide moral support to these great service personal who were working under difficult and trying circumstances, the United Nations Association of Sri Lanka carried out a program to distribute Bottled Water and Biscuits to the Police and Armed Forces checkpoints from Panadura to Aluthgama, Kelaniya, Peliyagoda, Grandpass, Maradana, Mattakkuliya, Modera, Borells, Kotehana, Slave Island, Galle Face, Pettah, Fort, Colpetty, Bambalapitiya, Wellawatta, Kirilaponne, Kalubowila, Dehiwala, Mount Lavania, Ratmalana, Angulana, Lunawa, and Moratuwa, including all isolated areas en-route, which have been cordoned off for quarantine, by the Police and Armed Forces, mainly in Angulana and Attulugame in Bandaragama.

It is pertinent to mention that Surgical Face Mask, Biscuits and Bottled Water were also provided to some Police Stations as well as the Superintendent of Police Office, Panadura. This task was carried out on 15th, 19th and 22nd November, 2020, with the participation of our Executive Committee members sphere headed by Errol Smith, Secretary General of the UNASL.
We wish to express our sincere thanks and gratitude to Maliban Biscuit Manufacturors (Pvt) Ltd., and Ceylon Biscuits Ltd., who donated Biscuits as well as Haltota Springs (Pvt) Ltd., for providing the Bottled Water at a special discounted price, for this project.

Distribution of Dry Rations

The UNASL donated over 70 Dry Rations Packs worth Rs.3,000/= each to needy people with the sponsorship of the Secretary General as well as several members of the Association.

MR. ERROL SMITH
Secretary-General
United Nations Association of Sri Lanka
Our lives depend on a healthy planet

Every day we depend on biodiversity (the sheer variety of life found on Earth) to keep us alive and healthy. The air we breathe, the water we drink, the foods we eat and the medications we take are all by-products of a healthy planet.

But our world, and the diversity of life it supports, is under threat. Deforestation, pollution, greenhouse gas emissions, draining of wetlands, climate change, globalization and other factors of modern life are wiping out species and damaging ecosystems at unprecedented rates. When we damage the Earth, we damage our own health. Human beings are as susceptible as any other species.

"Many of the global health challenges that we face today, including infectious diseases, malnutrition and noncommunicable diseases are all linked to the decline of biodiversity and ecosystems."

-Dr Maria Neira, WHO Director, Department of Public Health, Environmental and Social Determinants of Health-

And in many cases the strongest mosquito in the forest is the best at transmitting malaria. Meanwhile, large-scale human transformation of the environment has also brought us in closer contact with wildlife that harbour many pathogens including the Ebola virus and Lyme disease.

Limits food, medicine production

As the world’s population continues to grow, competition for land and water resources to produce food, energy and housing is fierce. We need a wide variety of animal and plant life for adequate human nutrition so that populations are neither malnourished nor obese. Rich biodiversity provides ecosystems with natural pest management, soils with nutrients needed for healthy crops, and the insects that are needed to pollinate plants like olive, almond and apple trees.

We rely on biodiversity to produce traditional medicines and aide in the development of pharmaceuticals that keep our communities healthy. Plant biodiversity provides both health and economic benefits, as plants have been the single greatest source of natural medicines to date – from aspirin to cancer drugs. When we lose plant species, we lose the opportunity to discover potential drugs in the future.

More air pollution, less clean water

Changes to the environment also threaten our supply of freshwater. Ecosystems help regulate the flow of water and help regulate the amount of sediments and contaminants in our water resources. It is estimated that more than 768 million people still rely on unimproved water supplies that often have high levels of contamination. Loss of biodiversity reduces the planet’s ability to cleanse itself of these contaminations, bringing about waterborne and water-related diseases. With continued urbanization, air pollution is causing...
harm to both human and ecosystem health. WHO estimates that 1 in 8 deaths globally is caused by Air pollution, making it the world’s largest single environmental health risk. It is also damaging plant and tree life needed to help regulate air quality.

Protecting the living world

While biodiversity lies outside the traditional roles of the health sector, it is vital for those of us working in public health to partner with other sectors, particularly those working in conservation and the sustainable use and management of natural resources, to ensure human health is at the forefront of environmental policies. Since 2000 the world has been making progress on the Millennium Development Goals. People have been brought out of poverty, access to safe water has been increased, and the spread of HIV and malaria has been reduced. But, the global health challenges we will face in the coming years will stem from how well we manage and respond to environmental changes resulting in biodiversity loss. Together with the Convention of Biological Diversity, WHO recently launched a new report, "Connecting Global Priorities: Biodiversity and Human Health, a State of Knowledge Review". We hope this report will provide a useful reference as we move into the Sustainable Development Goals and post-2015 development agenda. As the world adopts new goals, it has a unique opportunity to highlight biodiversity’s role as a key foundation for both sustainable development and human health. Today, on World Environment Day let’s urge everyone to take action to keep our planet healthy. All of us have a role to play. It starts with protecting our natural resources and consuming with care. After all, there is only one Earth, but more than 7 billion lives depending on its precious resources.

DR. MARIA NEIRA
WHO Director, Department of Public Health, Environmental and Social Determinants of Health.

Quality Circle Concept

History of QC

Quality circles were originally described by W. Edwards Deming in the 1950s, Deming praised Toyota as an example of the practice. The idea was later formalized across Japan in 1962 and expanded by others such as Kaoru Ishikawa. The Japanese Union of Scientists and Engineers (JUSE) coordinated the movement in Japan. The first circles started at the Nippon Wireless and Telegraph Company; the idea then spread to more than 35 other companies in the first year. 1

Quality circle

is a volunteer group composed of workers (or even students), usually under the leadership of their supervisor (or an elected team leader), who are trained to identify, analyze and solve work-related problems and present their solutions to management in order to improve the performance of the organization, and motivate and enrich the work of employees.

When matured, true quality circles become self-managing, have gained the confidence of management. Quality circles are an alternative to the dehumanizing concept of the division of labor, where workers or individuals are treated like robots. They bring back the concept of craftsmanship, which when operated on an individual basis is uneconomic but when used in group form can be devastatingly powerful. Quality circles can help enrich the lives of workers or students and aid in creating harmony and high performance. Typical topics are improving occupational safety and health, improving product design, and improvement in the workplace and manufacturing processes.

7 QC Tools - INTRODUCTION

The 7 QC Tools are simple statistical tools used for problem solving. These tools were either developed in Japan or introduced to Japan by the Quality Gurus...
such as Deming and Juran. In terms of importance, these are the most useful. Kaoru Ishikawa has stated that these 7 tools can be used to solve 95 percent of all problems. These tools have been the foundation of Japan’s astonishing industrial resurgence after the Second World War. For solving quality problems seven QC tools used are Pareto Diagram, Cause & Effect Diagram, Histogram, Control Charts, Scatter Diagrams, Graphs and Check Sheets. All this tools are important tools used widely at manufacturing field to monitor the overall operation and continuous process improvement. This tools are used to find out root causes and eliminates them, thus the manufacturing process can be improved. The modes of defects on production line are investigated through direct observation on the production line and statistical tools.

Methodology for solving quality problems following seven QC tools are required

1. Pareto Diagram
2. Cause & Effect Diagram
3. Histogram
4. Control Charts
5. Scatter Diagrams
6. Graphs
7. Check Sheets

1) Pareto Diagram is a tool that arranges items in the order of the magnitude of their contribution, thereby identifying a few items exerting maximum influence. This tool is used in SPC and quality improvement for prioritizing projects for improvement, prioritizing setting up of corrective action teams to solve problems, identifying products on which most complaints are received, identifying the nature of complaints occurring most often, identifying most frequent causes for rejections or for other similar purposes. The origin of the tool lies in the observation by an Italian economist Wilfredo Pareto that a large portion of wealth was in the hands of a few people. He observed that such distribution pattern was common in most fields. Pareto principle also known as the 80/20 rule is used in the field of materials management for ABC analysis. 20% of the items purchased by a company account for 80% of the value. These constitute the A items on which maximum attention is paid. Dr. Juran suggested the use of this principle to quality control for separating the "vital few" problems from the "trivial many" now called the "useful many".

Procedure: The steps in the preparation of a Pareto Diagram are:

1. From the available data calculate the contribution of each individual item.
2. Arrange the items in descending order of their individual contributions. If there are too many items contributing a small percentage of the contribution, group them together as "others". It is obvious that "others" will contribute more than a few single individual items. Still it is kept last in the new order of items.
3. Tabulate the items, their contributions in absolute number as well as in percent of total and cumulative contribution of the items.
4. Draw X and Y axes. Various items are represented on the X-axis. Unlike other graphs Pareto Diagrams have two Y-axes - one on the left representing numbers and the one on right representing the percent contributions. The scale for X-axis is selected in such a manner that all the items including others are accommodated between the two Y-axes. The scales for the Y-axes are so selected that the total number of items on the left side and 100% on the right side occupy the same height.
5. Draw bars representing the contributions of each item.
6. Plot points for cumulative contributions at the end of each item. A simple way to do this is to draw the bars for the second and each subsequent item at their normal place on the X-axis as well as at a level where the previous bar ends. This bar at the higher level is drawn in dotted lines. Drawing the second bar is not normally recommended in the texts.
7. Connect the points. If additional bars as suggested in step 6 are drawn this becomes simple.
All one needs to do is - connect the diagonals of the bars to the origin.

8. The chart is now ready for interpretation. The slope of the chart suddenly changes at some point. This point separates the 'vital few' from the 'useful many' like the A, B and C class items in materials management.

2) Cause & Effect Diagram

A Cause and Effect Diagram is a tool that shows systematic relationship between a result or a symptom or an effect and its possible causes. It is an effective tool to systematically generate ideas about causes for problems and to present these in a structured form. This tool was devised by Dr. Kouro Ishikawa and as mentioned earlier is also known as Ishikawa Diagram. The steps in the procedure to prepare a cause-and-effect diagram are:

1. Agree on the definition of the 'Effect' for which causes are to be found. Place the effect in the dark box at the right. Draw the spine or the backbone as a dark line leading to the box for the effect.

2. Determine the main groups or categories of causes. Place them in boxes and connect them through large bones to the backbone.

3. Brainstorm to find possible causes and subsidiary causes under each of the main groups. Make sure that the route from the cause to the effect is correctly depicted. The path must start from a root cause and end in the effect.

4. After completing all the main groups, brainstorm for more causes that may have escaped earlier.

5. Once the diagram is complete, discuss relative importance of the causes. Short list the important root causes.

3) Histogram

Histograms or Frequency Distribution Diagrams are bar charts showing the distribution pattern of observations grouped in convenient class intervals and arranged in order of magnitude. Histograms are useful in studying patterns of distribution and in drawing conclusions about the process based on the pattern. The Procedure to prepare a Histogram consists of the following steps:

1. Collect data (preferably 50 or more observations of an item).
2. Arrange all values in an ascending order.
3. Divide the entire range of values into a convenient number of groups each representing an equal class interval. It is customary to have number of groups equal to or less than the square root of the number of observations. However one should not be too rigid about this. The reason for this cautionary note will be obvious when we see some examples.

4. Note the number of observations or frequency in each group.

5. Draw X-axis and Y-axis and decide appropriate scales for the groups on X-axis and the number of observations or the frequency on Y-axis.

6. Draw bars representing the frequency for each of the groups. 1. Provide a suitable title to the Histogram.

7. Study the pattern of distribution and draw conclusion.

4) Control Charts

Variability is inherent in all manufacturing processes. These variations may be due to two causes: i. Random / Chance causes (un-preventable).

ii. Assignable causes (preventable). Control charts was developed by Dr. Walter A. Shewhart during 1920's while he was with Bell Telephone Laboratories. These charts separate out assignable causes. Control chart makes possible the diagnosis and correction of many production troubles and brings substantial improvements in the quality of the products and reduction of spoilage and rework. It tells us when to leave a process alone as well as when to take action to correct trouble. BASIC CONCEPTS: a. Data is of two types: Variable – measured and expressed quantitatively Attribute – quantitative b. mean and Range: –X –
Mean is the average of a sub-group R - Range is the difference between the minimum and maximum in a sub-group c. control Charts for Variables Charts depicting the variations in –X and R with time are known as –X and R charts. –X and R charts are used for variable data when the sample size of the subgroup is 2-5. When the subgroup size is larger, s Charts are used instead of R charts where s is the standard deviation of the subgroup. Control charts for defectives are p and np charts. P charts are used when the sample size is constant and np charts are used when the sample size is variable. In the case where the number of defects is the data available for plotting, c and u charts are used. If the sample size is constant, c charts are used and u charts are used for variable sample sizes.

5) Scatter Diagram
When solving a problem or analyzing a situation one needs to know the relationship between two variables. A relationship may or may not exist between two variables. If a relationship exists, it may be positive or negative, it may be strong or weak and may be simple or complex. A tool to study the relationship between two variables is known as Scatter Diagram. It consists of plotting a series of points representing several observations on a graph in which one variable is on X-axis and the other variable in on Y-axis. If more than one set of values are identical, requiring more points at the same spot, a small circle is drawn around the original dot to indicate second point with the same values. The way the points lie scattered in the quadrant gives a good indication of the relationship between the two variables.

6) Graphs
Graphs of various types are used for pictorial representation of data. Pictoral representation enables the user or viewer to quickly grasp the meaning of the data. Different graphical representation of data are chosen depending on the purpose of the analysis and preference of the audience. The different types of graphs used are as Given below:

1. Bar Graph To compare sizes of data
2. Line Graph To represent changes of data
3. Gantt chart To plan and schedule
4. Radar chart To represent changes in data (before and after)
5. Band Graph Same as above

7) Check Sheets
As measurement and collection of data forms the basis for any analysis, this activity needs to be planned in such a way that the information collected is both relevant and comprehensive. Check sheets are tools for collecting data. They are designed specific to the type of data to be collected. Check sheets aid in systematic collection of data. Some examples of check sheets are daily maintenance check sheets, attendance records, production log books, etc. Data collected using check sheets needs to be meaningfully classified. Such classification helps gaining a preliminary understanding of relevance and dispersion of the data so that further analysis can be planned to obtain a meaningful output. Meaningful classification of data is called stratification. Stratification may be by group, location, type, origin, symptom, etc.

MR. ASOKA PERERA
Assistant Secretary-General
United Nations Association of Sri Lanka

WELCOMING OUR NEW MEMBERS
2020. 07. 01 – 2020. 12. 31

Special Life Member
Dr. V. Tharindu N. Indunil - 1880

Life Member
Mr. M. S. Oshadha Sahan - 1875
Mr. J. M. B. Udayasiri Wattegama - 1876
Ms. D. Thamara R. K. Wijayawardena - 1877
Mr. Russell Travis Jayatileke - 1878
Mr. M. M. Don Dimuthu Prabath - 1879
Mr. M. K. Kamal Shantha - 1881
Mr. G. Kasun Erantha Perera - 1882
It is very important to understand and aware of HEALTH. Health change whole body differently. Health means not only providing medical health care but also health promotion programs would help people to understand the importance and how to maintain healthy behaviors. Health promotion expanded in new ways and is being challenged.

Good health keep smooth mechanical operation of the body while bad health (ill health) breakdown this mechanism. Good health means keep away disease or illness. In the late 1940 the World Health Organization challenged the view of health.

WHO -1946 stated that ‘Health’ is a complete state of physical, mental and social well-being and not merely the absence of disease.

The lifestyle factors and behavior of the individual is very important to focus the prevention on disease and illness. Some specific behaviors lead to increase the risk of disease. Eg: lack of fitness, Smoking, eating habits some of those.

The social and environmental conditions affecting the health of people.

Presently whole world experience in bad practice of all factors mentioned above and its effect individually such as infants, children, older persons, higher income persons, lower income persons etc.

It is clear from this practicing and follow the hygienic methods is responsible by each civilians and is not only the creation of health but also need to prevent pollution (Air, Water, Earth), waste disposing (introduce recycling methods) urbansation, poverty, etc. will interacting.

MRS. SHYAMA WIJEKULASURIYA
Ordinary Member
United Nations Association of Sri Lanka